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Conditional Lie-Backlund symmetry and reduction of 
evolution equations 

R Z Zhdanovt $ 
ho ld -Somer fe ld  InsriNte for Mathematical Physics, LeibnitVtrzlBe IO, 38678 Clausthal- 
Zellerfeld. Germany 

Received 23 January 1995. in final form 6 April 1995 

Abstract. We suggest a generalization of the notion of invariance of a given partial differential 
equation with respect to a LieBkklund vector field. Such a generalizakion proves to be effective 
and enables us to construct principally new ansatz reducing evolution-type equations to several 
ordinary diffezential equations. In the framework of the said generalization, we obtain principally 
new reductions of a number of nonlinear heat conductivity equations U ,  = uIx + F ( v ,  u.J with 
poor Lie symmetry and obtain theu enact solutions. It is shown that these solutions cannot be 
consmcted by means of the symmetry reduction procedure. 

1. Introduction 

Construction of exact solutions of nonlinear partial differential equations (PDES) is one of the 
most important problems of modem mathematical physics. The most effective and universal 
method used is the symmetry reduction procedure pioneered by Sophus Lie. But there is 
a natural restriction on the application of the said procedure: the equations being studied 
should have non-trivial Lie symmehy. There exist very important equations (in particular, 
those describing heat conductivity and some nonlinear processes in biology) with very poor 
Lie symmetry. So, it would be desirable to modify the symmetry reduction procedure in 
such a way that it could be applied to these equations as well. Fortunately, the main idea 
of the symmetry reduction procedure-the reduction of the equation being studied to PDEs 
having less independent variables by means of specially chosen ansatz4an be applied 
to some of these if one utilizes their conditional symmetry (see [5,7]). The method of 
conditional symmetries of PDEs is closely connected with the ‘non-classical reduction’ [I] 
and ‘direct reduction’ [21 methods (see also [12,13]). 

Further possibilities of constructing exact solutions of PDES exist by the use of their Lie- 
Bicklund (higher, generalized) symmetry [l 11. In this way multi-soliton solutions of the 
KdV, mKdV, sineGordon and cubic Schrodinger equations can be obtained [3 ] .  The choice of 
physically significant examples of equations admitting non-trivial LieBacklund symmetry is 
very restricted, however, there are examples due to Galaktionov er nl [ 10,161 and Fushchych 
et a1 [4,6] of ansatz reducing PDEs admitting only trivial Lie-Bicklund symmetry to 
systems of ordinary differential equations (ODES). These facts can be understood within 
the framework of the conditional Lie-Backlund symmetry which is introduced below. 

t On leave from the Institute of Mathematics of the Academy of Sciences of Ukraine, Tereshchenkivska Str. 3, 
252004 Kiev, Ukraine. 
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It will be established that conditional invariance of the equation under study ensures its 
reducibility and this can be applied to conshct its exact solutions. Since the class of 
PDES conditionally invariant with respect to some Li-Backlund field is substantially wider 
than the class of PDEs admitting Lie-Backlund symmetry in the classical sense, the said 
result yields principally new possibilities for the reduction of PDEs with poor Lie and Lie- 
BXcklund symmetry. We will give several examples of reduction of PDEs to systems of 
ODES by means of the ansatz corresponding to their conditional Lie-Backlund symmetry 
and we will show that the exact solutions obtained in this way cannot be consiructed by 
means of the classical symmetry reduction procedure. 

Let 

u:=FO,x,u,ul,uz,...,u,) (1) 

where U E Cn@4z, C'), ut = akuu/axk, 1 6 k < n, be some evolution-type equation and 

with 

v = 11@, x ,  U, Ut,  u1. U::. ur1.. . .) 
some smooth Lie-Backlund vector field (LBVF). 

variables t and x by the symbols D, and Dx respectively: 

(3) 

In the above formulae we denote the total differentiation operators with respect to the 

D: = a, + uIau + urlaUl + uIlaul + . . . 
D, = a, + u,a, + u,,au, + uZaul + . . . . 

11 = w, x, U) - t o @ ,  x ,  U)% - t l( t ,  x, u)ux 

If the function 17 is of the form 

(4) 

then the LBVF (2) is equivalent to the usual Lie vector field and can be represented in an 
equivalent form as 

e = .w, x ,  u)a, + tl(t, x ,  u)a, + GO. X, uia,. 

Definition 1. We say that equation (1) is invariant under the LBVF (2) if the condition 

holds. 

In (5) M is a set of all differential consequences of the equation U, - F = 0. 

Defrnirion 2. We say that equation (1) is conditionally invariant under LBVF (2) if the 
following condition 

(6) 
holds. 

Here, the symbol L, denotes the set of all differential consequences of the equation 
q = 0 with respect to the variable x. 

Evidently, condition (5) is nothing but the usual invariance criterion for equation (1) 
under LBVF (2) written in a canonical form (see, e.g. [ll]). Most 'soliton equations' like 
the KdV, mKdV, cubic Schriidinger and sineGordon equations admit infinitely many LBVFS 
which can be obtained from some initial LBVF by applying the recursion operator. 

Q(u: - F)lmL, = 0 
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Another important remark is that on the set of solutions of equation (1) we can exclude 

(7) 

all derivatives with respect to t and thus obtain the vector field (2) with q of the form 

11 = q ( t , x ,  U ,  U l r  UZr . . ., U N ) .  

In the following we will consider LBVFs of the form (2) and (7) only. 
Clearly, if equation (1) is invariant under LBVP (2). then it is conditionally invariant 

under the said field; however, the inverse assertion is not true. This means, in particular, 
that definition 2 is a generalization of the standard definition of invariance of PDES with 
respect to LBVP. Providing that (2) is a Lie vector field, definition 2 coincides with the 
definition of Q-conditional invariance under the Lie vector field. 

One of the important consequences of Q-conditional invariance of a given PDE under 
the Lie vector field is the possibility of obtaining an ansatz which reduces this PDE to a 
single PDE with less independent variables (see, e.g. 171). We will show that conditional 
invariance of the evolution-type equation (1) ensures its reducibility to N ODES (N is the 
order of the highest derivative contained in I) from (7)). 

2. Reduction theorem 

Consider the nonlinear PDE 

q ( t , x ,  U ,  1 1 1 3 . .  ., U N )  = o  (8 )  
as the Nth-order ODE with respect to variable x .  Its general integral is written (at least 
locally) in the form 

U = f ( t ,  x ,  '+'l(f), VZ(t), . . . , pN(t ) )  (9) 
where p j ( t ) ,  j = 1, N are arbitrary smooth functions. We will call expression (9) an ansatz 
invariant under LBVP (2) and (7). 

Theorem 1. Let equation (1) be conditionally invariant under the LBVF (2) and (7). Then 
ansatz (9) invariant under LBVF (2) and (7) reduces PDE (1) to a system of N ODES for 
functions p j ( t ) ,  j = 1, N. 

- 

- 

Proof. We first prove that given the conditions of the theorem the system of PDES 

F(t, X ,  U, U I , .  . . , U,)  

q ( t , x , u , u l , . . . , U N ) = O  

is compatible. 
Differentiating the first equation of (10) N times with respect to x ,  differentiating the 

second equation once with respect to f and comparing the derivatives U N ~  and uIN we obtain 
the equality 

D,NF = - ( v u * ) - ' ( n + v ~ u t  +rlu,uit + . . . + v U N - , u ~ - - l t )  

or 

DYF = 4vUw)- ' (q t  + vaF+ qu,D,F +.-. + quN.,DY-'F). 

Consequently, providing that the condition 

( ~ t  +v~F+v,,D,F+...+q.ND,NF)l~nr. = O  (11) 

holds identically, where L is the set of all differential consequences of the equation 11 = 0, 
then the system of PDEs (10) is in involution and its general solution contains N arbitrary 



A = 

- 
The determinant A is the Wronsky determinant for functions yj = af/aqj, j = 1, N. We 
will prove in the case considered that A # 0. 

Let A = 0, then due to the properties of the Wronsky determinant the functions yj are 
linearly dependent. Consequently, there exist A j  =A]@), j = 1, N such that 

- 

- ... - - 
a V N  

- ;? a 2 f  - ... - 
a w  aRax a V N a X  . (13) 

N 
C A j ( r ) y j  = 0. 
j=1 

Substituting yj = af/aqj into the above equality we obtain 

Integrating the first-order PDE (14) we have 

f = f(tx X ,  0 1  2 0.2,. . . , "-1) - 
where wj = A N q j  - A j q ~ ,  j = 1, N - 1. Consequently, in the case A = 0 the general 
solution of ODE (8) depends not on N but on N- 1 arbitrary constants @IO), j = 1, N - 1. 
We arrive at a contradiction, due to the assumption that A = 0. Hence, we conclude that 
A # 0. 

Substituting (9) into (1) we obtain 

j=1 
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or 

where an overdot means differentiation with respect to t. 
Differentiation of (15) N - 1 times with respect to the variable x yields 

3845 

If we consider equations (15) and (16) as a system of linear inhomogeneous algebraic 
equations for functions @ I ,  &, ..., @N, then its determinant has the form (13) and, 
consequently, - is not equal to zero. Solving (15) and (16) with respect to the functions 
@ j ,  j = 1, N we obtain 

- 
@j =Hj(t,x,pl,pz,...,p~) j = 1 , N .  (17) 

Let us expand the right-hand sides of (17) into a Taylor series with respect to the variable 
x in the neighbourhood of xo and then equate coefficients at (x  - ~ 0 ) ~ :  

- 
@ j = H j ( t , x o , ( O i , V ) Z ,  . . . ,p~)  j = 1 . N  (18) 

(19, 
- akHj 

axk 
O=-(t,xo,pi,pz ,..., p ~ )  j = l , N ,  k > l .  

Thus, we have established that the system of PDEs (10) is equivalent to the infinite set of 
equations (18) and (19). 

Next, we will prove that the right-hand sides of equations (19) vanish identically on the 
solutions of the system of ODES (18). 

Let qj = &(t,  C1, Cz, . . . , CN), j = 1,  N where Cj are arbitrary complex constants, be 
a general solution of the system of ODES (18). If at least one of the equations is not satisfied 
identically on the solutions of equations (18), then substituting into it the expressions for qj 
we obtain a relation of the form h(C1, Cz, . . . , CN) = 0. Hence, it follows that the general 
solution of the system of PDES (IO) contains no more than N - 1 independent constants. 
We arrive at a contradiction, which proves that the right-hand sides of equations (19) vanish 
identically on the solutions of system of ODES (18). Consequently, system (18) and (19) is 
equivalent to the system of N ODES 

- 

- - 
(20) @. , - - H. ,(~,~O,V~I.~Z.....V)N)=~~(~,~,~~,(PZ,...,(PN) j =  1,N. 

Thus, given the conditions of the theorem, ansatz (9). which is invariant under LBVF (2) 
and (7), reduces equation (1) to the system of N ODES (20) and the theorem is proved. 0 

Consequence. Let equation (1) be invariant under the LBVF (2) and (7). Then, ansatz 
(9) which is invariant under LBM (2) and (7) reduces PDE (1) to a system of N ODES for 
functions p j ( t ) .  j = 1, N .  

- 

The proof follows from the fact that if an equation is invariant under LBVF, then it is 
conditionally invariant with respect to this LBVF. 
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3. Some examples 

Utilizing the above theorem, one can conshuct principally new exact solutions even for 
equations with poor Lie symmetry. As an illustration, we give several examples. 

Example 1. Consider the nonlinear beat conductivity equation with a logarithmic-type 
nonlinea&y 

(21) 

We will establish that equation (21) is conditionally invariant with respect to LBVF (2) with 

ut = U, + (or + B In u - y2(h  u)')u. 

-1 2 q = uxx - yux - U  U*. 

Condition (6) for equation (21) reads 

D [ V - D ; ~ -  ( o r + ~ + ( ~ - 2 ~ ~ ) 1 n u - y ~ l n ~ ~ ) ~ 1 ~ ~ ~ =  = O  (23) 

where M is the set of all differential consequences of equation (21) and L, is the set of 
all differential consequences of the equation uxx - yux - U-'.: = 0 with respect to x .  
Substituting expression (22) into the left-hand side of equation (23) and transferring to the 
manifold M (i.e. excluding the derivatives ur, un, uIxx with the help of equation (21)) we 
transform it to the form 

2u-'(u, - yur - U -1 ux) 2 2 f4yu-'u,(u, ,  - yu, -.-'U:). 

Evidently, the above expression does not vanish on the manifold M ,  but on the manifold 
M n Lx it vanishes identically: 

2u-'(u,, - yu, - U  -1 U,) 2 2 +4yu-'u,(u,, - yu, - u-'u:)lY"L, = 0. 

Hence, it follows that the nonlinear heat conductivity equation (21) is conditionally 
invariant under LBVF (2) with q of the form (22). but not invariant under the said LBVF 
in the sense o f  definition 1. This fact is also shown in [liJ, where the results of the 
classification of nonlinear heat conductivity equations ut = uxz + F ( u )  admitting LBVF are 
given. It has been established, in particular, that only the linear heat equation admits an 
LBVF which cannot be represented in the form (Z), (4) and, consequently, is not equivalent 
to a Lie vector field. 

Integrating the equation q = uxx - yur - u-'u: = 0 as an ODE with respect to x we 
obtain an ansatz for u ( t , x ) :  

~ ( t ,  x )  = exp(m(t) + d t )  exp(vx). (a) 
Substitution of ansatz (24) into equation (21) gives rise to a system of two ODES: 

dl = OL + BPI - y2v: @z = (B + YZ - 2YZVl)PZ. 

The general solution of the above system is given by one of the following formulae. 
(i) k = 8' +40ry2 > 0 

2 
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(iii) k = p2 + 4uy2 = 0 
1 

U = Ct-'exp(yx + y2 t )  + -@t + 2 ) .  
2y2t 

Here, C is an a rb i t rq  constant. 
It is important to emphasize that the above solutions cannot be obtained by the symmetry 

reduction procedure. The maximal local invariance group of equation (21) is the two- 
parameter group of translations [I41 

and solutions (i) and (ii) are obviously not invariant under the above group. 

Example 2. Consider the nonlinear heat conductivity equation 

t '=t+el  x ' = x + e 2  u ' = ~  

U $  ~ x x  + F ( u ) .  (25) 
We will establish that it is conditionally invariant with respect to LBVF (2) with 17 = 
uIx - A(u)u;, providing that functions F(u) and A(u) satisfy the system of ODES 

A + 4 A A  + 2 A 3  = 0 F - A F  - AF = 0. (26) 
Equality (6) for equation (25) takes the form 

all - D:v - FvlM"Lx = 0 
where M is the set of all differential consequences of the equation U, = U= + F(u),  and 
Lx is the set of all differential consequences of the equation U, - A(u)u: = 0 with respect 
to x .  

Excluding the derivatives u t ,  utx,  utXx from the left-hand side of the above equality, 
and grouping terms in the obtained expression in a proper way, we have 
2Aq2 + 4(A + A2)v + ( A  + 4AA + ZA3)u: + (F - A F  - AF)U:lMnL, = O  
or taking equations (26) into considerations 

2Av2 + 4(A + A2)lll,wnL, = 0. (27) 
Evidently, the left-hand side of equation (27) does not vanish on the manifold M but it 
does vanish on the manifold M n L,. Consequently, the nonlinear heat equation (25) is 
conditionally invariant with respect to LBVF (2)  with q = uxx -'A(u)u: if and only if 
equations (26) hold. Thus, the conditions of theorem 1 are satisfied and we can reduce 
equation (25) to two ODES .with the help of ansatz (9) invariant under the above mentioned 
LBVF. 

Let the function e(u)  be determined by the equality 

T i l n  z)-'I2 d r  = uu + p 

where a, ,5 are arbitrary real constants. Then the ansatz 
0 

reduce the nonlinear equation (25) with 
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to the system of ODES 

Here Al .  A2 are arbitrary real constants and b(0) is a value of the first derivative of the 
function &(U) in the point x = 0. 

The above system of ODES is integrated in quadratures, thus giving rise to a family of 
exact solutions of the nonlinear PDE (25) with rather exotic nonlinearity (28). The solutions 
obtained are also non-invariant with respect to the two-parameter goup of translations with 
respect to t and x ,  which is the maximal local invariance group of equation (25) and (28). 

Example 3. Here, we will perform the reduction of a nonlinear PDE of the form (21): 

ur = U,, + a(h2 u)u a E (29) 

By a ratber cumbersome computation one can check that equation (29) is conditionally 

(30) 
Integrating the third-order ODE 11 = 0 we obtain the following ansatz for the function 

(i) Under a = a2 =- 0 

(ii) under a = -a2 < 0 

to systems of three ODES. 

invariant with respect to LBVF (2) with 
2 rl = U uur - 3uu,u, + zu: + au,u2. 

u(t ,  x ) .  

u ( t , x )  =exp(q~(t)  + ~ ( t ) c o s a x + ~ ( ~ ) s i n a x ]  (31) 

U(?, x )  = exp{vpl(t) + (oz(f) coshax + ~ ( t )  sinhax] (32) 

Substitution of expressions (31) and (32) into PDE (29) gives rise to the following 

(i) Under a = a2 > 0 

where PI, (oz, @ are arbitrary smooth functions. 

systems of nonlinear ODES for the functions 91, R, M. 

dl = a%? + 44 + 9:) 
ujz = a2(2$91 - I)% 
+3 =.2(&1 - 1)m 

dl = a’(& - d - 4 
Ujz = a  (1 - 2v13v2 
+3 = a2(1 - 2fpl)@. 

U, = uzx + U: + au2 

(ii) under a = -a2 c 0 

2 

Making the change of the dependent variable U = exp U, we rewrite equation (29) in 
the form 

(33) 
and what is more, the ansatz (31) and (32) take the following form. 

(i) Under a = a* > 0 
u ( t . x )  = ( 0 1 ( t ) + ( 0 ~ ( f ) c o s a x + ~ ( t ) s i n a x  

(ii) under a = -012 < 0 
u ( t , x )  =pl(t)+pz(t)coshax + ~ ( t ) s i n h a x .  

(34) 

(35) 
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If we choose rps = 0 in formulae (34) and (35), then the well known Galaktionov!s 
ansatz are obtained [lo, 161. These ansatz were used to study blow-up solutions of the 
nonlinear PDE (33). It should be noted that all solutions of the nonlinear heat conductivity 
equations obtained in [lo] can be constructed within the framework of our approach. 
Example 4. Let us describe all PDBs of the form 

ut = uxx + R(u, U,) 
which are conditionally invariant under LBVP (2)  with q = U, - au, U E RI. 

we obtain the determining equation for the function R: 

The above PDE is rewritten in the form 

(36) 

Acting with the operator (2) on the equation (36) and transferring to the manifold M n L ,  

2 2  2 a U R,,, + ~ u u ~ R ~ ~ = + u ~ R ~ ~ + a u R ~ + a u ~ R " ~  +aR=O. 

( J 2  +a)R  = 0 

R = fi(u: -au2)u, + f2C.2 - au2)u. 

where J = u,a, +sua,=. This form is easily integrated and the general solution reads 

Here f l  , f 2  are a r b i h q  smooth functions. 

(2)  with q = uzz - au is 
Thus, the most general PDE of the form (36) conditionally invariant with respect to LBVF 

ut = U,, + f l ( u :  - au2)u, + fzficu: - au2)u. (37) 
Solving the equation q = uxx - au = 0 we obtain the following ansatz for u( t ,  x ) .  
(i) Under a = -az < 0 

(ii) under a = a2 > 0 
u(t,  x )  = rpl ( t )  cos a x  + rpz(t) sin o(x 

u ( t , x )  =rpl(t)coshax+rp2(z)sinhox. 
These reduce PDE (37) to systems of two ODES for functions v l ( t ) ,  v2(t): 

dl = -a%1+ af:rp2 + f:Vl 

dl = a2rp1 + 0rf ; rPz + 
62 = -0r2Vz - afi+w + f:@z 

d 2  = a292 + u f r r p l  + f;Vz 
where fi* = fi(a2(rpi i 9:)). 

4. Conclusion 

In papers [8,9] we constructed a number of ansatz of  type (9) which reduce the nonlinear 
heat equation U, = [a(u)uxlx + f (U) to several ODES. The basic technique used was the 
anti-reduction method. This paper provides a symmetry interpretation of these results. It 
is important to emphasize that there exist non-evolution equations which also admit anti- 
reduction. In particular, in [4,6,17] an anti-reduction of the nonlinear acoustics equation, of 
the equation for short waves in gas dynamics and of the nonlinear wave equation is carried 
out. It would be of interest to extend theorem 1 in order to consider these equations. 
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